\qquad

Foundation Unit 6 topic test

Date:

Time: 45 minutes
Total marks available: 39
Total marks achieved: \qquad

Questions

Q1.
The diagram shows a rectangle, a parallelogram and a triangle.

(a) Mark with arrows (>>) a pair of parallel lines.
(b) What type of angle is the angle marked x ?
(c) Mark the angle HCE with the letter y.

Q2.
The diagram shows a trapezium and a square.

(a) Write down the size of each of the angles of a square.
\qquad
(b) Mark, with the letter O, an obtuse angle.
(c) Mark, with arrows (>>), a pair of parallel lines.

Q3.

An angle is marked below.
(i) What type of angle is it?

(ii) Measure the size of the angle.
\qquad .. ${ }^{\circ}$

Q4.

Diagram NOT accurately drawn
(i) Work out the size of the angle marked x.
\qquad
(ii) Give a reason for your answer.
\qquad

Q5.

Here is an angle.

(a) Write down the mathematical name for this angle.
(b) Write down the size of the angle marked x.

Q6.

Diagram NOT accurately drawn

The diagram shows two identical squares and a triangle.
Find the size of the angle marked x°.

Q7.
*

$D A C, F C B$ and $A B E$ are straight lines.
Work out the size of the angle marked x.
You must give reasons for your answer.
(Total for Question is 5 marks)

Q8.

$A B C$ is a straight line.
$A B=B D$
Angle $B A D=25^{\circ}$
Angle $B C D=70^{\circ}$
Work out the size of the angle marked x.
Give reasons for your answer.

Q9. *

Diagram NOT accurately drawn
$A B C$ is a straight line.
$D E F G$ is a straight line.
$A C$ is parallel to $D G$.
$E F=B F$.
Angle $B E F=50^{\circ}$.
Work out the size of the angle marked x.
Give reasons for your answer.

Q10. *

Diagram NOT accurately drawn
$A B C$ is an isosceles triangle.
$A B=B C$.
Angle $A B C=110^{\circ}$.
$A C D E$ is a quadrilateral.
Angle $C D E=100^{\circ}$.
Angle $A C D$ is a right-angle.
$A E$ is parallel to $B C$.
Work out the size of the angle marked x.
Give reasons for each stage of your working.

Q11.

The diagram shows three sides of a regular polygon.

The size of each exterior angle of the regular polygon is x°. The size of each interior angle of the regular polygon is $8 x^{\circ}$.
Work out the number of sides the regular polygon has.

Q12.

Diagram NOT accurately drawn
$A B C D E$ is a regular polygon.
$E B$ is a straight line.
Angle $E B C=72^{\circ}$.
Work out the size of the angle marked x.

Examiner's Report

Q1.

This question was well answered. In parts (a) \& (c) some answers were spoilt with multiple lines and angles being indicated, but this was not common.

Q2.

This was an accessible question for most candidates. It allowed candidates a positive start to the paper. Some pupils tried to show all sets of parallel lines but generally approached the question in a sensible manner.

Q3.

Most students identified the angle in part (i) as being obtuse. Not surprisingly, the most common incorrect answer was 'acute'. Part (ii) was also answered very well. A small number of students read their protractor incorrectly and gave an answer in the range 53° to 57°. The answers given suggested that almost all the students had a protractor.

Q4.

A straightforward question but 36% of candidates did not score any marks and then only 30% were able to write down that the angles in a straight line add up to 180°

Q5.

This question was well attempted with few blank responses and most students gained all three marks. Common incorrect responses in part (a) were obtuse and right-angle, in part (b) the only repeated errors were 100 or $360-100=260$

Q6.

A good proportion of students were able to find the size of the angle marked x°. Some students gave the other base angle of the triangle as 50° and worked out the third angle as 80° but then got no further. Some, however, wrongly assumed that the two unknown angles in the triangle were equal. It was good to see angles marked on the diagram but the working of some students was not presented particularly well and was sometimes difficult to follow.

This question had a mixed response. The most popular approach was to calculate the internal angles of the triangle.
A significant number of candidates thought that the triangle was isosceles (some thought that it was equilateral). A common incorrect approach here was to either calculate the angle ACB correctly as 45 degrees and then state the angle $A B C$ as 45 degrees or to calculate both the angles $A C B$ and $A B C$ (ie the 'base angles') as 55 degrees.

Few candidates were able to state the reasons for their calculations correctly, often omitting to use the word angle, eg 'the triangle is 180 degrees'.
Candidates should be advised to state the reasons for their calculations with the calculation, not at the end when it is unclear which calculation is being justified by the reason.
Most candidates were able to identify their calculations clearly with the angles by simply labelling the diagram, but candidates not using this approach should be advised to use a suitable unambiguous notation, eg labelling the internal angles a and b, to identify the angles. Most candidates gave their final answer in the form $x=$...

Q8.

Only a few fully correct answers were seen because reasons, containing all the key elements, were rare. When reasons were given they were seldom all given. If attempted, angles in a triangle add up to 180° and angles on a straight line add up to 180° were generally correct, however 'isosceles triangle equal to 25 since 2 parallel sides' was the most common quote for the rarely mentioned isosceles triangle.
A common method used was to start with the large triangle to give 25+70=95 then 180-95=85 unfortunately they then said $x=85$ so no marks could be awarded.
It was rare to see "angle $A D B=25$ " written down but 25 was seen labelled in the diagram and this received 1 mark.

Q9.

This question was well attempted with few blank responses seen but many students failed to gain full marks. Those that did correctly identify angles on the diagram which led to $x=80^{\circ}$ were on the whole unable to list all the appropriate reasons using correct words. Many students were still incorrectly referring to alternate angles as Z angles, some described a method and others missed key words out of their reasons, the most common of which was the word 'angles'. Weaker students where often able to identify at least one correct angle on the diagram, usually $A B E=50^{\circ}$, but then incorrectly labelled $E F B=50^{\circ}$ or incorrectly labelled $E A F$ and $E F B$ as 65°. Those that used the diagram were more successful as it was often difficult to identify which angles students were finding from their working out alone.

Q10.

A surprising number of candidates (9\%) scored one mark in this question, either for correctly calculating the missing angles in the isosceles triangle $A B C$ or for finding the alternate angle CAE. Two marks were obtained for obtaining both angles and this was achieved by 4% of candidates. The 10% of candidates that found the missing angle x scored 3 marks but only 0.6% of candidates could state the reasons correctly. Few candidates use the three letter notation to identify angles. Some candidates used Z angles in their explanation which is no longer acceptable for alternate angles.

Q11.
No Examiner's Report available for this question

Q12.

This question was well attempted by most students, but more often than not, they did not achieve full marks. Common incorrect responses were from students who did not realise that it was necessary to calculate the interior or exterior angle of the pentagon in order to calculate the value of x. Other common incorrect responses included, assuming all angles in the quadrilateral, $B C D E$, were equal to 72 or that all the angles in the triangle, $A B E$, were equal to 60 . Some students simply did $72 \div 2$ which does lead to the correct answer but is clearly an incorrect and incomplete method and gained no marks. Another common incorrect response which gained 1 mark was where students correctly the found the interior angle of a pentagon then incorrectly did 108 $\div 2=54$.

Mark Scheme

Q1.

Question	Working	Answer	Mark	Notes
(a)		Pair of parallel lines	1	B1 for any pair of parallel lines marked.
(b)		Acute Correct angle marked	1	B1 cao
(c)		B1 cao		

Q2.

PAPER: 5MB2F 01

Question		Working	Answer	Mark	Notes	
	(a)		90	1	B1 cao	
(b)		O marked correctly Correct arrows	1	B1		

Q3.

PAPER: 5MB2F_01							
Question	Working	Answer	Mark	Notes			
	(i)		obtuse	2	B1 cao		
		125		B1 accept 123-127			
(ii)							

Q4.

Question		Working	Answer	Mark	Notes
	(i)		70	2	B1 for 70 look for answer on diagram (ii)
	reason		C1 for angles (on a) straight line (add up to) 180°		

Q5. (a) and (c) only)

Q6.

PAPER: 5MB2F_01				
Question	Working	Answer	Mark	Notes
		100	4	M1 identifying the triangle as isosceles or gives other base angle as 50° M1 for $180-50-50(=80)$ M1 for 360-90-90-" "80" A1 cao

Q7.

	Working	Answer	Mark	Notes
*	(Method 1) Angle $A C B=180-$ 135 $(=45)$ (sum of angles on a straight line $=\underline{180}$) Angle $A B C=180$ - 70 - $45(=65)$ (sum of angles in a triangle $=\underline{180}$ $(x=) 180-65$ (=115) (sum of angles on a straight line $=180$) OR (Method 2) Angle $A C B=180$ - 135 (=45) (sum of angles on a straight line $=180$) $(x=) 70+45$ (=115) (exterior angle $=$ sum of interior opposite angles) OR (Method 3) Angle $\mathrm{DAB}=180$ - $70=$ 110 (sum of angles on a straight line $=180$) $(x=) 360-135-$ 110 (sum of exterior angles of a polygon $=360$)	$x=115$	5	M1 for correct method to find angle DAB or angle $A C B$ or angle $A B C$ (may be implied by correct angle marked in diagram) M1 for complete correct method to find x A1 for $\underline{x}=115$ C2 (dep on M1) for fully correct reasons for chosen method no extras (C1 (dep on M1) for one correct reason for chosen method) [NB $x=115$ must be stated explicitly, 115 only scores A0]

Q8.

PAPER: 1MA0_1F					
Question		Working	Answer	Mark	Notes
*		base angles of isosceles triangle are equal and angles on a straight line add up to 180° and angles in a triangle add up to 180° OR base angles of isosceles triangle are equal and angles in a triangle add up to $\underline{180^{\circ}}$ OR base angles of isosceles triangle are equal and exterior angle of a triangle is equal to the sum of the interior opposite angles	60° with reasons	4	B1 for angle $A D B=25$ can be shown on the diagram M1 for a complete method to find x C2 (dep 2 previous marks) for 60 with full reasoning seen (C1 (dep 1 previous mark) for one reason) QWC: Reasons must be appropriate to the method shown.

Q9.

Q10.

| Question | Working | Answer | Mark | Notes |
| :---: | :--- | :--- | :---: | :---: | :---: |$|$| * | Angle $A C B=35^{\circ}$
 (base angles of an
 isosceles triangle are
 equal)
 (angles in a triangle add
 up to 180)
 Angle $C A E=35^{\circ}$
 (alternate angles are
 equal)
 $x=360-(100+90+$
 $35)=135$
 (angles in a
 quadrilateral add up to
 $\left.360^{\circ}\right)$ |
| :--- | :--- |

Q11.

Question	Working	Answer	Mark	AO	Notes
		18	P	3.1 b	P1 for a process to start to solve problem, e.g. $8 x+x=180$ or $180 \div 9(=20)$ P1 for a full process to solve problem, e.g. $360 ~^{\prime} 20^{\prime}$
			P	3.1 b	
			A	1.3 b	A1 cao

Q12.
PAPER: 5MB3F_01

Question	Working	Answer	Mark	Notes
		36	3	M1 for $3 \times 180 \div 5(=108)$ or $540 \div 5(=108)$ or for a correct calculation to find the exterior angle eg $360 \div 5$ or $180-360 \div 5(=108)$ M1 (dep) for " 108 " -72 or $180-$ " $360 \div 5$ " -72 or " $360 \div 5$ " $\div 2$ A1 cao OR M1 for $x+x+(72+x)=180$ oe or $5(x+72)=540$ oe M1 for $(x=)(180-72) \div 3$ oe or $(x=) 540 \div 5-72$ oe A1 cao

[^0]Foundation Unit 6 topic test © Pearson Education 2015

[^0]: Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Mathematics

